Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jinglin Chen, Lei Han and Zhongning Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: czn@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.047$
$w R$ factor $=0.117$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Bis(isothiocyanato)tetrapyridineruthenium(II) dichloromethane disolvate

Abstract

The title compound, trans- $\left[\mathrm{Ru}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, was prepared by the reaction between trans-dichlorotetrapyridineruthenium(II) and excess KSCN in refluxing aqueous pyridine. The Ru atom is in a pseudo-octahedral environment, with two N-donors from two monodentate NCS groups and four N -donors from the pyridine ligands. The complex molecule lies on a crystallographic twofold rotation axis, passing through Ru and the two pyridine ligands

Comment

The crystal structure of the title compound, (I), consists of discrete trans- $\left[\mathrm{Ru}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$ molecules and dichloromethane solvent molecules. The Ru atom is coordinated octahedrally by four N atoms from the pyridine ligands and by two N atoms from the monodentate NCS groups in an octahedral arrangement. The $\mathrm{Ru}-\mathrm{N}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ lengths are in the range 2.072 (5) -2.096 (5) \AA, close to those in the previously reported compounds trans- $\left[\mathrm{Ru}(\mathrm{CN})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right] \cdot 2 \mathrm{MeCN}(\mathrm{Coe}$ et al., $1995 a$ a and trans- $\left[\mathrm{RuCl}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\left(\mathrm{PhCN}^{2}\right)\right] \mathrm{PF}_{6}(\mathrm{Coe}$ et al., 1995b). The NCS groups are essentially linear. The N4-C1 [1.159 (5) A] and C1-S1 [1.632 (4) A] lengths indicate tripleand single-bond character, respectively, and are similar to those in the reported complexes $\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$ (Valach et al., 1984) and $\left[\mathrm{Ni}(\mathrm{en})_{2}(\mathrm{NCS})_{2}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ (Squattrito et al., 1996). The $\mathrm{C}-\mathrm{C} \quad[1.339(9)-1.389$ (7) A $]$ and $\mathrm{C}-\mathrm{N} \quad[1.323$ (6)1.346 (5) A] lengths are in the normal ranges for pyridine ligands (Evans et al., 1973; Coe et al., 1995a,b). The mean bond angles in the pyridine ligands $\left[\mathrm{C}-\mathrm{N}-\mathrm{C}=116.2(7)^{\circ}, \mathrm{N}-\mathrm{C}-\right.$ $\mathrm{C}=123.4$ (8) ${ }^{\circ}$, and $\mathrm{C}-\mathrm{C}-\mathrm{C}=118.4$ (4) and 119.6 (4) ${ }^{\circ}$] are similar to those observed in $\left[\mathrm{Ni}(\mathrm{NCS})_{2}(\mathrm{py})_{4}\right][\mathrm{C}-\mathrm{N}-\mathrm{C}=$ 116.8 (5) ${ }^{\circ}, \mathrm{N}-\mathrm{C}-\mathrm{C}=122.8$ (5) ${ }^{\circ}$, and $\mathrm{C}-\mathrm{C}-\mathrm{C}=117.1$ (6) and $120.2(6)^{\circ}$; Valach et al., 1984].

(I)

Experimental

The title compound was synthesized by the reaction of a pyridine solution of trans- $\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$ (Evans et al., 1973) with an excess of an aqueous solution of KSCN. After refluxing for 1 h , the solution was put aside at room temperature to give a yellow precipitate. The

Received 9 September 2002 Accepted 20 September 2002 Online 27 September 2002
solid was then filtered off, washed with methanol and ether, and dried in air. Well-shaped crystals were grown by slow diffusion of hexane into a dichloromethane solution at room temperature.

Crystal data

$\left[\mathrm{Ru}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

$$
\begin{aligned}
& D_{x}=1.474 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \mathrm{K} \alpha \text { radiation } \\
& \text { Cell parameters from } 3186 \\
& \quad \text { reflections } \\
& \theta=2.0-25.0^{\circ} \\
& \mu=0.99 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.40 \times 0.35 \times 0.28 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=703.48$
Monoclinic, $C 2 / c$
$a=12.9410$ (8) \AA
$b=16.1308$ (11) \AA
$c=15.4715$ (11) \AA
$\beta=100.988$ (2) ${ }^{\circ}$
$V=3170.4$ (4) \AA^{3}
$Z=4$

Data collection

Siemens SMART CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.681, T_{\text {max }}=0.759$
4923 measured reflections

2765 independent reflections
2352 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-14 \rightarrow 15$
$k=-19 \rightarrow 10$
$l=-13 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.117$
$S=1.15$
2765 reflections
170 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0355 P)^{2}\right. \\
& \quad+11.5869 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.51 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Ru} 1-\mathrm{N} 4$	$2.025(3)$	$\mathrm{Ru} 1-\mathrm{N} 1$	$2.096(5)$
$\mathrm{Ru} 1-\mathrm{N} 3$	$2.072(5)$	$\mathrm{S} 1-\mathrm{C} 1$	$1.632(4)$
$\mathrm{Ru} 1-\mathrm{N} 2$	$2.082(3)$	$\mathrm{N} 4-\mathrm{C} 1$	$1.159(5)$
$\mathrm{N} 4^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{N} 4$	$179.8(2)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{N} 2$	$179.7(2)$
$\mathrm{N} 4-\mathrm{Ru} 1-\mathrm{N} 3$	$89.88(11)$	$\mathrm{N} 4-\mathrm{Ru} 1-\mathrm{N} 1$	$90.12(11)$
$\mathrm{N} 4^{\mathrm{i}}-\mathrm{Ru} 1-\mathrm{N} 2^{\mathrm{i}}$	$88.84(13)$	$\mathrm{N} 2-\mathrm{Ru} 1-\mathrm{N} 1$	$89.84(11)$
$\mathrm{N} 4-\mathrm{Ru} 1-\mathrm{N} 2^{\mathrm{i}}$	$91.16(13)$	$\mathrm{C} 1-\mathrm{N} 4-\mathrm{Ru} 1$	$175.6(3)$
$\mathrm{N} 4-\mathrm{Ru} 1-\mathrm{N} 2$	$88.84(13)$	$\mathrm{N} 4-\mathrm{C} 1-\mathrm{S} 1$	$179.9(5)$
$\mathrm{N} 3-\mathrm{Ru} 1-\mathrm{N} 2$	$90.16(11)$		

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.
The positions of the H atoms were generated geometrically $(\mathrm{C}-\mathrm{H}$ bond fixed at $0.96 \AA$), assigned isotropic displacement parameters, and allowed to ride on their respective parent C atoms.

Figure 1

A view of the title complex with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) $1-x, y, \frac{3}{2}-z$.]

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the NSF of China (No. 20171044).

References

Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Coe, B. J., Meyer, T. J. \& White, P. T. (1995a). Inorg. Chem. 34, 593-602.
Coe, B. J., Meyer, T. J. \& White, P. T. (1995b). Inorg. Chem. 34, 3600-3609.
Evans, I. P., Spencer, A. \& Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 204-209.
Squattrito, P. J., Iwamoto, T. \& Nishikiori, S. (1996). Chem. Commun. pp. 26652666.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Valach, F., Sivy, P. \& Koren, B. (1984). Acta Cryst. C40, 957-959.

